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Abstract Inspired by Spence’s seminal work on trans-

position, we propose a synthetic approach to understanding

the temporal control of operant behavior. The approach

takes as primitives the temporal generalization gradients

obtained in prototypical concurrent and retrospective tim-

ing tasks and then combines them to synthetize more

complex temporal performances. The approach is instan-

tiated by the learning-to-time (LeT) model. The article is

divided into three parts. In the first part, we review the

basic findings concerning the generalization gradients

observed in fixed-interval schedules, the peak procedure,

and the temporal generalization procedure and then

describe how LeT explains them. In the second part, we use

LeT to derive by gradient combination the typical perfor-

mances observed in mixed fixed-interval schedules, the

free-operant psychophysical procedure, the temporal

bisection task, and the double temporal bisection task. We

also show how the model plays the role of a useful null

hypothesis to examine whether temporal control in the

bisection task is relative or absolute. In the third part, we

identify a set of issues that must be solved to advance our

understanding of temporal control, including the shape of

the generalization gradients outside the range of trained

stimulus durations, the nature of temporal memories, the

influence of context on temporal learning, whether tem-

poral control can be inhibitory, and whether temporal

control is also relational. These issues attest to the heuristic

value of a Spencean approach to temporal control.

Keywords Timing � Temporal generalization gradients �
Learning-to-time (LeT) model � Spencean approach

The concept of temporal generalization gradient may unify a

large body of research on animal timing. In fact, most studies

on animal timing of the last four decades have dealt, directly

or indirectly, with temporal generalization gradients; on the

empirical side, with the factors that determine their proper-

ties, such as overall shape, symmetry, location, tails, and

height; on the theoretical side, with models of the processes

that engender them (e.g., Catania 1970; Church 2003, 2004;

Church et al. 1994; Dews 1970; Gallistel 1990; Gibbon 1991;

Gibbon et al. 1984; Killeen and Fetterman 1988; Lejeune

et al. 2006; Lejeune and Wearden 2006; Machado 1997;

Machado et al. 2009; Meck 1983; Meck and Church 1984;

Platt 1979; Platt and Davis 1983; Roberts 1981, 1998;

Staddon and Higa 1999; Zeiler and Powell 1994).

Experimental research on the determinants of temporal

generalization gradients and theoretical research on the

causal processes of these gradients define an analytic

approach to understanding temporal generalization. Within

the analytic approach, the gradients themselves are what

needs to be explained, the explanandum. Less pursued has

been its converse, a synthetic approach, wherein temporal

generalization gradients are used to explain other behav-

ioral phenomena; they become the explanans.

In this article, we advance a synthetic approach to tim-

ing. That is, we take as primitives a set of well-known and

reasonably consensual findings concerning temporal
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generalization gradients and then use these primitives to

explain seemingly more complex performance. Like a

chemist, we attempt to synthetize more complex perfor-

mance based on a few principles governing simple per-

formance, or equivalently, given a complex performance,

we attempt to reduce it to the interplay of simpler perfor-

mances. The approach extends to the time domain Spence’s

(1936, 1937, 1942) seminal idea that excitatory and inhi-

bitory gradients may combine to produce unexpected

results such as transposition, or seemingly relational forms

of responding. Generalization gradients volunteer as rea-

sonable primitives for they are induced by simple and well-

studied processes of reinforcement and extinction. By

resorting to generalization gradients, it is needless to infer

explanatory instances and structures that might differ

across theoretical perspectives. In short, generalization

gradients do not need to be translated from one theoretical

approach to the other—they are per se.

The choice of what counts as a primitive and what

counts as a derivative is to some extent arbitrary—different

researchers are likely to make different choices [e.g.,

whereas Köhler (1938) conceived of relational forms of

stimulus control as primitives, Spence (1936, 1937, 1942)

conceived of them as derivatives]. However, any choice of

primitives must be accompanied with a set of principles or

rules to combine them. Without these rules, the synthetic

approach cannot work. A well-defined set of primitives

with explicit rules of derivation defines a theoretical model.

Our synthetic approach to timing is instantiated by the

learning-to-time (LeT) model (Machado 1997; Machado

et al. 2009), a quantitative model of the causal processes of

timing in animals. An outgrowth of Killeen and Fetter-

man’s (1988) behavioral theory of timing (BeT), LeT has

been used to interpret research findings, relate results that

seem to have little in common, contrast timing models, and

ask new questions that require empirical answers. But

perhaps the model’s most important feature is that it

qualifies as a plausible and parsimonious instance of the

synthetic approach. Plausible because, as we shall see, it

relies on three fundamental principles of learning—rein-

forcement, extinction, and generalization—to account for

temporal performance. Parsimonious because it opera-

tionalizes those principles in relatively simple ways (e.g.,

linear learning rules; small number of free parameters).

Going one step further, we propose to consider LeT a null

hypothesis in the animal timing domain. This means that

we propose the model as a standard against which to

compare alternative models, to reject the null and accept

these alternative models—in other words, to entertain dif-

ferent and perhaps more numerous or complex sets of

principles—we should require an equal degree of explic-

itness and consistency and a better account of experimental

results.

The synthetic approach emerges from recent work from

our laboratory wherein we explore generalization gradients

as the ingredients from which complex timing performance

derives (Carvalho et al. 2016; Vieira de Castro and

Machado 2012; Vieira de Castro et al. 2013). Our proposal

unifies our previous research and extends it to tasks we

have not explored so far. Also, by importing to the time

domain a Spencean approach transversal to the study of a

variety of other stimulus dimensions, we reestablish a long-

lost parallel between temporal stimulus control and other

relevant stimulus dimensions (such as size, shape, bright-

ness, and spatial location).

This paper is divided into three parts. In the first part, we

review the concepts of temporal generalization and tem-

poral generalization gradients, central to our synthetic

approach. We focus on studies with animals exposed to two

types of operant conditioning procedures, those involving

concurrent timing and retrospective timing. The prototype

of concurrent timing procedures is the fixed-interval (FI)

reinforcement schedule (Skinner 1938), or its close rela-

tive, the peak procedure (Catania 1970; Roberts 1981); the

prototype of retrospective timing judgements is the tem-

poral generalization task (Church and Gibbon 1982). The

generalization gradients obtained with the two prototypes

define our primitives, the building blocks of the synthetic

approach. The explanation of how these gradients come

about according to LeT introduces the principles or rules

that subsequently will be used to synthetize more complex

performances.

Although we use a quantitative model to instantiate the

synthetic approach, in the present study we focus more on

its qualitative features than on its quantitative fits to

specific data sets. At this early stage of the synthetic

approach, a qualitative analysis may be more fundamental

because it focuses on the model’s core assumptions

abstracted (as much as possible) from their precise math-

ematical formulations. To illustrate, the LeT model

assumes a learning process whereby the strength of asso-

ciative links increases with reinforcement and decreases

with extinction. We focus more on this qualitative feature

than on the fact that LeT assumes a linear rule (Bush and

Mosteller 1955) as a first-order approximation to the

quantitative, dynamic properties of the learning process.

The empirical counterpart of our focus on qualitative

model features is our focus on idealized (frictionless, we

might say) research findings, that is, on data patterns and

trends abstracted from their natural noisy background. The

model’s mathematical details are nonetheless presented in

the ESM Appendix for the interested reader.

In the second part, we show the synthetic approach at

work. That is, we use the primitives to derive some familiar

results obtained with more complex procedures, including

mixed FI–FI schedules and the free-operant psychophysical
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procedure in the domain of concurrent timing, and simple

and double temporal bisection procedures in the domain of

retrospective time judgements. We chose these procedures

and their corresponding results not only to illustrate the

synthetic approach, but also to identify some of the thorny

problems that any timing theory must solve. To close this

part, we use the synthetic approach to examining a new

research issue, whether temporal control in the bisection

task is relational or absolute. This case study illustrates in a

concrete way what it means to consider LeT a null

hypothesis.

In the third and last part, we summarize the synthetic

approach and then discuss some of the issues it brings to

the forefront of timing research. To broaden the scope of

the study, we analyze each issue both in the light of LeT

and in the light of another better-known model of timing,

scalar expectancy theory (SET; e.g., Gibbon 1991). Some

of these issues remain empirically unresolved, whereas

others remain theoretically controversial, but all seem to be

crucial to advance our understanding of timing. Hence,

they can be viewed as a road map for future research to

further extend and test our simple Spencean hypothesis—

complex temporally regulated behavior may result from the

interaction of simple temporal generalization gradients.

Part I: The temporal generalization gradients
in prototypical procedures

When a stimulus sets the occasion in which a response is

reinforced, the stimulus comes to control the response—the

probability or rate of the response increases when the

stimulus is present and decreases when the stimulus is

absent. But stimulus control is never completely selective

for other stimuli may also control the response, albeit to a

lesser extent. When an animal responds in the presence of

stimuli S1, S2,…, Sn because its responses were reinforced

in the presence of stimulus S?, stimulus generalization has

taken place. Moreover, when S1, S2,…, Sn differ from S?

along a continuous dimension—say light wavelength or

tone frequency—the function relating a measure of

response strength such as rate or probability to S1, S2,…, Sn
defines a generalization gradient.

Figure 1 shows two classical examples. Guttman and

Kalish (1956) reinforced four groups of pigeons for peck-

ing a key illuminated with a different light (see S? in

Fig. 1a), and then, in subsequent tests, illuminated the key

with lights of different wavelengths (S1, S2,…, Sn), and

recorded the number of pecks at each light. The general-

ization gradients of each group peaked at the S? and then

decreased with the difference between the value of the

other stimulus and the value of S?. Jenkins and Harrison

(1960) alternated periods with and without a 1000-Hz tone

and reinforced pigeons for pecking at a key only during the

periods with the tone. Subsequently, they varied the fre-

quency of the tone and obtained the pitch generalization

gradient shown in Fig. 1b. As for wavelength, the gradient

peaked at the S? and decreased with the difference

between the test and the S? frequencies (for a review, see,

e.g., Ghirlanda and Enquist 2003).

Fixed-interval schedule and the peak procedure

Temporal generalization occurs when the S? is an interval

of time, say a T-seconds interval, measured from the onset

of a timer marker, and S1, S2,…,Sn are other temporal

intervals, measured from the same time marker. Consider a

FI T-seconds reinforcement schedule (see Fig. 2a). On each

trial, a time marker such as the illumination of a key for a

pigeon initiates the interval. Responses during the T-sec-

onds interval are not reinforced (the minus symbols in the

figure); the first response after T seconds is reinforced (the

plus symbol), and then the next trial begins. Because most

reinforced responses occur shortly after T, the pigeon does

not experience intervals much longer than T (shaded

range).

How do the effects of reinforcement at T seconds since

trial onset generalize to other intervals? With respect to

intervals shorter than T, performance on each trial at the

steady state answers the question: On the average, response

rate, R(t), is zero or low at the beginning of the trial and

then increases according to a roughly ogive function until

the end of the trial; typically, the rate reaches its maximum

around t = T. Figure 2b shows a stylized FI temporal

generalization gradient.

Researchers have attempted to identify the factors that

influence the shape of the gradient, and thus have studied

the effect of a number of independent variables such as the

absolute value of T, the magnitude of the reinforcer, and

the amount of training on a number of dependent variables

such as the duration of the initial pause, the pattern of

responding on individual trials (break-and-run vs. scallop),

or the running rate (e.g., Dews 1970, 1978; Guilhardi and

Church 2004; Lejeune and Wearden 1991; Lowe and

Harzem 1977; Lowe et al. 1979; Richelle and Lejeune

1980; Schneider 1969; Wynne and Staddon 1988). When

they compared the response-rate gradients obtained with

different values of T, they found that these gradients

superimpose when the independent and dependent vari-

ables are scaled, the former with respect to T and the latter

with respect to the maximum response rate during the

interval. Figure 2c exemplifies the gradient superimposi-

tion with the data reported by Dews (1970). Known as

scale invariance, this is perhaps the most robust property of

temporal generalization gradients. In fact, it is the foun-

dation stone of arguably the most influential model of
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animal and human timing, SET (Gibbon 1977, 1991;

Gibbon et al. 1984; but see Lejeune and Wearden 2006;

Staddon and Cerutti 2003; Zeiler and Powell 1994 for

discussions of its violations).

The FI temporal generalization gradient is consistent

with a simple and intuitive hypothesis: Reinforcement at

T engenders a hypothetical excitatory gradient over the

interval from zero to T, a gradient that peaks at t = T and

Fig. 1 a Wavelength generalization gradients obtained by Guttman and Kalish (1956) with four groups of pigeons. b Example of a tone

generalization gradient obtained by Jenkins and Harrison (1960) also with pigeons

Fig. 2 a A fixed-interval T-

seconds trial. The ‘S’ row shows

Stimulus onset and offset. In the

‘R’ row, the minus symbols

stand for extinction of

Responses at times t\T; the

plus symbol stands for the

moment T after which

responding is reinforced; and

the shaded area stands for

intervals not experienced by the

subjects. b Hypothetical

excitatory gradient for a FI task.

c Response-rate generalization

gradients obtained by Dews

(1970) in three FI schedules.

The curves that superimpose

when plotted the axis are scaled.

d The learning-to-time (LeT)

model as applied to the FI task.

States become active serially.

Each state is linked to the

operant response. The dotted,

dashed, and solid lines represent

increasingly strong links
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then decreases to a low value at t = 0; responding starts

when the excitatory gradient exceeds a noisy threshold, H.

The LeT model formalizes this simple hypothesis.

Figure 2d shows the three components of the LeT

model, a series of behavioral states, numbered n = 1, 2,

3, …; a set of links from the states to the operant

response, each with a strength or weight denoted by the

variable W(n); and the operant response itself. The model

works as follows: The time marker (e.g., the illumination

of a keylight in a FI schedule with pigeons) activates the

first state. After a while, the first state becomes inactive

and the second state in the series becomes active; after

another while, the second state becomes inactive and the

third state becomes active. We may picture the dynamic

process as a wave that sweeps across the states, activating

each one in series. The speed of the wave—the number of

states activated per unit of time—remains constant within

a trial, but varies from trial to trial. It is modeled as a

Gaussian random variable with mean lk and standard

deviation rk extracted at the time marker onset.

While a state is active, the strength of its link determines

whether the subject responds: If that strength exceeds a

threshold, H, the subject responds, otherwise it does not. At

the beginning of training, the link strength of state n, W(n),

equals a constant, W0. To ensure that responding occurs

throughout the first trial, we set W0[H.

When the reinforcer is delivered, the active state—state

n*—sees its link strengthened, whereas all previous states,

active in extinction, see their links weakened, and all

subsequent states, inactive during the trial, see their links

unchanged. In symbols, W(n) increases for n = n*,

decreases for n\ n*, and does not change for n[ n*. LeT

assumes one of the simplest mathematical forms for the

changes in W with reinforcement and extinction, the Bush

and Mosteller (1955) linear operator rule (see Machado

et al. 2009 for details).

According to LeT, the temporal generalization gradient

results from the link strengths, W(n), changed during

training with reinforcement and extinction. The key idea is

that, at the steady state, W(n) quantifies the degree of

temporal overlap between the activation of state n and the

delivery of reinforcement. Hence, the set of W values plays

the role of the hypothetical excitatory gradient mentioned

above. The links of the first states decrease to zero because

they correlate negatively with reinforcement—when they

are active, reinforcement rarely occurs.1 The links of sub-

sequent states increase because their active period is more

likely to coincide with reinforcement. In fact, one of the

states will have the strongest link, and for that reason, we

call it the modal state for interval T. Finally, the states

further down the series retain their initial link because they

remain inactive during training. The link profile predicts

that average response rate will be zero at trial onset and

then increase as an ogive until the time of reinforcement

(Machado et al. 2009).

Reinforcement at T may have effects on intervals longer

than T. To see them, the experimenter needs to omit the

reinforcer and extend the trial. Surprisingly, these effects

remain poorly understood. A few studies (Machado and

Cevik 1998; Monteiro and Machado 2009) and non-sys-

tematic observations (Ferster and Skinner 1957) report that

response rate remains high for intervals significantly longer

than T, perhaps on the order of 10T; for even longer

intervals, behavior may oscillate, with pauses and periods

of sustained responding alternating (Crystal and Baramidze

2006; Kirkpatrick-Steger et al. 1996; Machado and Cevik

1998; Monteiro and Machado 2009). For our present pur-

poses, the important point is that the gradient after T seems

to differ significantly from the gradient before T.

A high and sustained gradient after T does not follow from

the simple excitatory gradient hypothesized above (Fig. 2b),

for that gradient would presumably decrease to zero as the

interval grows beyond T and becomes increasingly more

distinct from T. But it does follow from the gradient of link

strengths that LeT predicts because as we move from the

modal state in both directions, to previous states and to

subsequent states, W decreases to different asymptotes. For

previous states, W decreases to zero, but for subsequent

states, W decreases to W0. Because W0 is greater than the

threshold, responding is sustained when those later states

become active following intervals longer than T.

The asymmetry of the temporal generalization gradient

around T shows that the moment of reinforcement is not the

only determinant of the shape of the gradient. This idea

becomes clearer when we compare a FI T-seconds schedule

with the equivalent peak procedure. The moment of rein-

forcement remains the same, but in the peak procedure FI

trials alternate with longer trials, say 4T-seconds long, that

end without reinforcement. In most studies, after an inter-

trial interval, a tone or light is turned on until either a

reinforcer occurs at approximately T seconds (FI or food

trials), or the trial ends after 4T-seconds elapse (empty

trials). As Fig. 3a shows, the peak procedure is similar to a

FI in the interval from zero to T and differs from it in the

interval from T to 4T. Typically, at the steady-state average

response rate increases from t = 0 to t = T and then it

decreases for t[ T (see Fig. 3b for the hypothetical gra-

dient, and Fig. 3c for empirical gradients obtained by

Roberts 1981); sometimes response rate increases again as

t approaches 4T (e.g., Roberts et al. 1989). The curves for

different values of T also are scale invariant. At steady

1 Another possibility is to decrease the link strength to a negative

value. The difference may be important to explain some experimental

findings through summation of temporal generalization gradients. We

return to this issue in the final section.
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state, on individual empty trials the animals start to respond

sometime before T and stop to respond sometime after T;

on some trials, they may start to respond again at the end of

the trial (Church et al. 1994; Kirkpatrick-Steger et al. 1996;

Sanabria and Killeen 2007).

Following the analytical approach, several studies have

examined the factors that affect the shape of the gradient,

its mode (peak time), the amount of responding at the mode

(peak rate), its symmetry around T, or its changes with the

nature of the time marker, for example (e.g., Roberts 1981,

1998; Roberts et al. 1989; Church et al. 1994). Other

studies have examined the effects of interrupting the

stimulus that signals the onset of the trial (gap procedure;

e.g., Roberts 1981, 1998; Cabeza de Vaca et al. 1994;

Kaiser et al. 2002). Recent studies have also shown that the

decrease in the generalization gradients past T can occur

abruptly (Balci et al. 2009) and develop slowly with higher

proportions of empty trials (Kaiser 2008), even though this

also entails less frequent FI trials and seems to rely on

different neural substrates when compared to increasing

limb of the generalization function (MacDonald et al.

2012). But for our purposes the main lesson learned from

the peak procedure is that, for the generalization gradient to

decrease past T, the animal must experience intervals

longer than T in extinction.

According to LeT (Fig. 3d), as we move from the FI to

the peak procedure, no new causal processes are required to

explain the shape of the new generalization gradient. The

experience of extinction for intervals longer than T intro-

duces a negative correlation between reinforcement and the

states activated after the modal state. Hence, the link

strengths of those states decrease from W0 to zero; when

they fall below the threshold H, responding stops.2 At the

steady state the link strengths (the excitatory gradient)

increase from zero (first states) to the highest W (modal

state) and then decrease to zero (states active during empty

trials) before they increase again to W0 (states inactive even

during empty trials). LeT predicts that the response-rate

generalization gradient will increase from t = 0 to

t = T and decrease from t = T to about t = 2T and then,

depending on the amount of training, it may increase again

or remain low until t = 4T. The model also predicts that

Fig. 3 a A Peak procedure trial

and its reinforcement (at T) and

extinction (at t\T and t[T)

contingencies. b Hypothetical

Gaussian excitatory gradient for

the peak task. c Response rates

obtained by Roberts (1981) with

rats in peak trials with FI 20-s

and FI 40-s schedules. d Profile

of link strengths predicted by

LeT. Only a subset of states is

shown. The link strengths

increase from the ‘initial’ states,

active at the beginning of the

trial, to the modal state at T, and

then decrease for ‘late’ states,

active after T

2 A more complete model would assume different thresholds to start

and stop responding, Hstart and Hstop, both random variables possibly

with different variances to account for the microstructure of

responding on the individual trials of the peak procedure (e.g., the

pattern of positive correlations between the start and stop times, and

negative correlations between the start times and the duration of the

response period—e.g., Cheng et al. 1993; Church et al. 1994; Gallistel

et al. 2004; Gibbon and Church 1992; Killeen and Fetterman 1993;

Machado and Keen 2003).
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response rate will increase if the experimenter extends the

empty trials significantly beyond the value used during

training, 4T in the foregoing example (see Monteiro and

Machado 2009). This prediction, which remains to be

tested systematically, shows that we need to explore the

shape of the temporal generalization gradients beyond the

intervals used during training, intervals longer than T in the

FI schedule, and intervals longer than the empty trials in

the peak procedure. Only by examining these boundary

conditions, as we may call them, will we know the full

effects of reinforcement at T and extinction before and after

T. Without such knowledge, our understanding of the very

primitives of the synthetic approach will remain incom-

plete and the scope of the approach will remain limited. In

the meantime, we conclude that the generalization gradient

for FI schedules is not simply the left limb of the gradient

for the corresponding peak procedure; it is different for

values of t greater than T.

The temporal generalization task

The two procedures presented above are the prototype of

concurrent timing tasks; by responding as the critical

interval elapses, the animal reveals its temporal general-

ization gradient. Next, we consider the prototype of

retrospective judgement tasks, tasks in which the animal

responds only after an interval ends. We set up the FI

equivalent in a retrospective timing task as follows: We

present a stimulus with duration T, and when the stimulus

ends, we illuminate a key or insert a lever to allow the

animal to respond, and then reinforce its response. Sur-

prisingly, perhaps, this non-differential procedure engen-

ders no temporal control (e.g., Elsmore 1971; Spetch and

Cheng 1998). The contrast with FI schedules, during which

a target response is only occasionally reinforced, suggests

that the temporal control of an operant response may

require some form of differential reinforcement. Hence, the

prototype of retrospective time judgement tasks, and the

correct analog of the FI schedule, is the temporal gener-

alization procedure. In its simplest form (see Fig. 4a), the

experimenter presents a stimulus that lasts for T or TS

seconds, with TS\T. When the animal responds at the

end of the stimulus, the experimenter reinforces the

responses that follow T (the S?) and extinguishes the

responses that follow TS (the S-; Church and Gibbon

1982; Reynolds and Catania 1962). In this conditional

discrimination task, the duration of the sample signals

whether a response will be reinforced. In the terminology

of Switalski et al. (1966), the procedure is an instance of

intra-dimensional discrimination training.

Fig. 4 a A temporal

generalization trial and its

contingencies. The response is

reinforced after the longer,

T-seconds sample, and

extinguished after the shorter,

TS-seconds sample; the gray

areas stand for the periods when

responding is not allowed; the

shaded area stands for intervals

the subjects do not experience.

b Hypothetical excitatory

gradient for a temporal

generalization task. c Temporal

generalization gradient obtained

by Church and Gibbon (1982)

with 8 s as the S? and shorter

durations as the S-. d Profile of

link strengths predicted by LeT
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The correlation between sample duration T and rein-

forcement engenders a temporal generalization gradient

that is similar to the FI gradient: Within the trained range,

response rate or probability increases from TS to

T (Fig. 4b, c shows a hypothetical gradient and the

empirical gradient obtained by Church and Gibbon 1982);

the gradient also is scale invariant (e.g., Church and Gib-

bon 1982). Although we think that a gradient obtained with

sample durations outside the range of the trained durations

will be similar to the FI gradient (i.e., low for t\TS and

high for t[ T), we do not know of any study that examined

the issue (see Church and Gibbon 1982, Study 2).

If we add a third stimulus duration (TL) with

TS\ T\TL and reinforce responses after T but not after

TS or TL (see Fig. 5a), we obtain the retrospective timing

task equivalent to the peak procedure. The animal experi-

ences reinforcement at T together with extinction at inter-

vals shorter and longer than T, resulting in a scale invariant

Gaussian-like gradient with its mode at T (Fig. 5b, c).

In terms of causal processes, the bell-shaped general-

ization gradient may result from an excitatory gradient that

is highest at T (the S?) and decreases, toward TS and TL

(the S-) or from an excitatory gradient centered at T plus

two inhibitory gradients, one centered at TS and the other

centered at TL. The LeT model assumes the former

alternative.

For LeT, the generalization gradient expresses once

again the profile of link strengths acquired during training.

Reinforcement strengthens the links connecting the states

active at T with the operant response, and extinction

weakens the links connecting the states active at TS and TL

with the operant response (Figs. 4d, 5d, respectively).

Although LeT invokes no new causal processes, we note

that, like other timing models, it does not explain why

temporal control requires differential reinforcement with at

least one temporally defined S? and one temporally

defined S- (see Russell and Kirkpatrick 2007; Vieira de

Castro et al. 2015).

Part II: The synthetic approach at work

Concurrent timing: mixed fixed-interval schedules

and the serial nature of temporal memories

A simple modification of the peak procedure illustrates the

potential of generalization gradients to synthetize more

complex temporally regulated performance. Suppose that we

Fig. 5 a A three sample

temporal generalization trial.

Responses are extinguished

after the shortest TS and the

longest TL samples and

reinforced after the intermediate

T samples. b Hypothetical

excitatory gradient for the task.

c Profile of link strengths

predicted by LeT. Compare

with Fig. 4
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replace the empty trials of the peak procedure by trials that

also end in reinforcement. The new schedule is a mixed FI

T1–FI T2 schedule with two distinct reinforcement moments,

T1 and T2. On a proportion p of the trials, reinforcement

occurs at T1 s since trial onset; on the remaining trials,

reinforcement occurs T2 s since trial onset (Catania and

Reynolds 1968; Ferster and Skinner 1957; Leak and Gibbon

1995; Lima 2010; Whitaker et al. 2003, 2008). No signal

announces the duration of the current trial. Figure 6c shows

the temporal gradient obtained by Whitaker et al. (2003)

using a mixed FI 30-s–FI 240-s schedule. The response-rate

generalization gradient is bimodal, with one mode close to

30 s and another at 240 s. Moreover, the two ascending

limbs superimpose if scaled with respect to 30 and 240 s,

respectively (see also Ferster and Skinner 1957,

pp. 597–605). More important is the fact that on the longer

trials, the animal generally starts responding before 30 s,

stops responding after 30 s, starts responding again some-

time later, and then continues responding until the end of the

trial (Whitaker et al. 2003). As Ferster and Skinner (1957,

p. 597) put it, ‘‘a well-marked priming exists after the shorter

interval, and a falling-off into a curvature appropriate to a

longer interval.’’

Consider a mixed schedule with parameters similar to

the peak procedure that we described above, that is, a

mixed FI T–FI 4T. As its name shows, the schedule com-

bines two FI schedules and therefore we could try to syn-

thetize its gradient from the gradients engendered by the

two FI schedules, the primitives. We would fail because the

correct ingredients are not those from the separate FI

schedules, but the gradient engendered by a T-seconds peak

procedure and the gradient engendered by a FI 4T-seconds

schedule. As Fig. 6a shows, the reinforcement contingen-

cies in the mixed FI–FI schedule are similar to the con-

tingencies during the peak procedure, for in both cases the

reinforced moment T is flanked by two directly experi-

enced extinction intervals; the second reinforcement

moment at 4T brings in the FI gradient.

Figure 6b shows three excitatory gradients: a Gaussian

gradient that corresponds to a peak procedure with rein-

forcement at T, a left Gaussian gradient that corresponds to

a FI 4T schedule, and a gradient obtained by adding the

other two. This third gradient has the same shape as the

generalization gradient observed in mixed schedules with

widely separated reinforcement moments (see Machado

et al. 2009, for quantitative details).

Figure 6d illustrates how the LeT model handles this

procedure. Because the states active around T and 4T cor-

relate positively with reinforcement and the remaining ones

with extinction, the generalization gradient will increase

Fig. 6 a A mixed FI–FI trial

with its contingencies. b Three

excitatory gradients, a Gaussian

gradient from a peak procedure

with reinforcement at T1, a half

Gaussian gradient from a FI T2

schedule, and the sum of the

two gradients. c Generalization

gradient obtained by Whitaker

et al. (2003) with a group of rats

exposed to a mixed FI 30-s–FI

240-s schedule. The gradient is

bimodal (one mode at 30 s and

another at 240 s). d Profile of

link strengths predicted by LeT.

Two states have the strongest

links with the response, the

modal states at T1 and T2
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from t = 0 to t = T, decrease from t = T to about

t = 2T as in a typical peak procedure, and then increase

again as t approaches 4T.

Mixed FI–FI schedules are important in the study of

timing because they show how generalization gradients

may combine to produce new forms of temporally regu-

lated behavior. Moreover, they also challenge timing

models that concentrate the effects of reinforcement in

distinct memory stores (e.g., SET). When the same

response is reinforced at two different moments, say T and

4T, these models explain the bimodal generalization gra-

dient by assuming two different memories, memory A

representing the effects of reinforcement at T and sampled

at trial onset, and memory B representing the effects of

reinforcement at 4T and sampled later into the trial. The

problem is that the models do not explain how the two

memories are created, populated, and accessed. That is,

they do not explain how the representation of a particular

interval is stored in memory A rather than memory B, or

how a particular temporal sample is retrieved from memory

B rather than memory A. As Machado (1997) argued,

SET’s account of the bimodal generalization gradient in

mixed FI–FI schedules is circular because the model pos-

tulates two memory stores to explain the temporal dis-

crimination, but the appropriate use of these stores

presupposes the temporal discrimination. We will see

below other expressions of the same logical problem (see

also Machado et al. 2009).

Concurrent timing: the free-operant psychophysical

procedure and the distributed nature of temporal

memories

The last concurrent timing procedure that we analyze, the

free-operant psychophysical procedure (FOPP), introduces

a second operant response into the experimental situation

and further illustrates how separate gradients may combine

to produce a generalization gradient. Figure 7a shows the

details. Responses on a Left key are reinforced unpre-

dictably (i.e., according to a variable interval, VI, schedule)

only during the first half of a T-seconds trial; responses on

a Right key are reinforced also unpredictably (according to

a VI schedule) only during the second half of the trial. No

stimulus signals the middle of the trial, the moment Left

Fig. 7 a A trial of a free-

operant psychophysical

procedure (FOPP) and its

contingencies. Left responses

are reinforced during the first

half of the trial and extinguished

during the second half. Right

responses have the opposite

contingencies. b Hypothetical

excitatory gradients for Left and

Right responses. c Response

rates on the left and right keys

as a function of time elapsed in

the trial; data adapted from

Machado and Guilhardi (2000)

in a task with a VI 40 s on the

left key and a VI 120 s on the

right key (black circles), and

with a VI 120 s on the left and a

VI 40 s on the right (empty

circles). d Profile of link

strengths predicted by LeT.

Each state is linked to both

responses. ‘Initial’ states are

linked strongly with Left and

weakly with Right; ‘late’ states

are linked strongly with Right

and weakly with Left. When the

VI’s are equal, ‘intermediate’

states are linked equally to both

responses
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responses cease to be reinforceable, and responses become

reinforceable.

Typically, at the steady state, two response-rate gener-

alization gradients are obtained, one for each operant

(Fig. 7b, c shows the hypothetical gradients and the

empirical gradients obtained by Machado and Guilhardi

2000, respectively). The rate on the Left key starts high and

then decreases, whereas the rate on the Right key starts low

and then increases. When the VI’s are equal the gradients

intersect at time t* close to the middle of the trial (t* & T/

2). The relative response-rate gradient, defined by the

proportion of right responses at each trial moment, follows

a roughly ogive curve. At trial onset it is close to 0, around

the middle of the trial it reaches 0.5, and at the end of the

trial, it is close to 1. Importantly, when the VI’s differ, the

rate gradients shift in predictable directions. If the VI for

the Left key is richer, the gradients shift to the right (the

animal stays longer on the Left key) and the relative rate

gradient crosses indifference at t*[ T/2; if the VI for the

Left key is poorer, the gradients shift to the left (the animal

changes to the Right key earlier) and the relative rate

gradient crosses indifference at t*\T/2 (e.g., Bizo and

White 1995; Machado and Guilhardi 2000).

According to LeT, the causal processes remain the same

as for the other procedures, except that in the FOPP each

state is linked to two operant responses, the Left and Right

key pecking (Fig. 7d). Because the link strengths express

the overlap between state activation and reinforcement, the

states active during the beginning of the trial become

linked strongly with the Left response and weakly with the

Right response, and conversely, the states active during the

end of the trial become linked strongly with the Right

response and weakly with the Left response; when the VI’s

are equal, the ‘intermediate’ states that are active around

the middle of the trial become linked equally with both

responses (see middle circle in Fig. 7d). Hence, when the

VI’s are equal the relative rate on the Right key at time t is

ogival and crosses 0.5 close to the middle of the trial.

However, when the VI’s differ, the reinforcement contin-

gencies bias the links of the ‘intermediate’ states toward

the richer operant and, as a consequence, the two response-

rate gradients and the ogival relative gradients shift in the

expected direction (Fig. 7c, Machado and Guilhardi 2000;

see also Bizo and White 1995; Guilhardi et al. 2007).

The FOPP procedure is important for yet another reason.

The reinforcer for each operant response distributes uni-

formly across the corresponding interval, the first half of

the trial for Left key pecks, and the second half of the trial

for Right key pecks. Therefore, the moments of rein-

forcement for each operant remain the same regardless of

the absolute value of the VI schedules. If the temporal

generalization gradients depended exclusively on these

moments, they should not shift when the VI’s change from,

say, favoring the Left key to favoring the Right key.

Because they shift, it seems that at least two variables

affect the gradients: the moments of reinforcement and the

frequency of reinforcement at those moments. In LeT these

variables map onto the state active at reinforcement and its

link strength (see Machado and Guilhardi 2000; Machado

et al. 2009).

Somewhat analogous to the FOPP is the midsession

reversal task, which can be conceived of as a session-wide

or single-trial FOPP. Typically, in a simultaneous dis-

crimination procedure, the animal faces two options, S1

versus S2; responses to S1 are reinforced in the first half of

the session and responses to S2 are reinforced in the second

half (for an extension to a 3-stimuli/2-reversals procedure,

see McMillan and Roberts 2015). The optimal strategy in

this task is to attend only to the local rate of reinforcement:

choose S1 until the first unreinforced response to S1 and

then reverse preference and choose S2 until the end of the

session (a win-stay, lose-shift strategy). Surprisingly, ani-

mals commit two types of errors around the moment of

reversal, they anticipate the reversal and choose S2 when S1

still is the reinforced option, and they perseverate after the

reversal and continue to choose S1 after S2 has become the

reinforced option.

After Cook and Rosen (2010) first reported the mid-

session reversal effect, a flurry of studies ensued (e.g.,

Laude et al. 2014; McMillan et al. 2014; McMillan and

Roberts 2012, 2015; Rayburn-Reeves et al. 2011, 2013;

Rayburn-Reeves and Zentall 2013; Stagner et al. 2013).

Most of their authors have interpreted the effect in terms of

animals timing the duration of the session up to the reversal

(e.g., Cook and Rosen 2010; McMillan and Roberts 2012),

which is consistent with the pattern of errors and plausible.

Because most midsession reversal experiments comprise

around 80 trials per session with 5- to 6-s ITIs, rats and

pigeons would be timing an interval of about four minutes,

which is feasible. However, how temporal control by the

time marker (seemingly, the session onset) combines with

the situational control by the trial outcome remains to be

worked out.

Retrospective timing: simple bisection

We illustrate the synthetic approach to retrospective timing

first with the simple bisection procedure and then with the

double bisection procedure. In the simple bisection pro-

cedure (see Fig. 8a), a trial begins with one of two samples

that differ only in duration: a short TS sample (e.g., a 1-s

light) or a long TL sample (e.g., 4-s light). After the

sample, two responses R1 and R2 (say pecking a Red or a

Green key) are simultaneously available. Choice of R1

following TS and that of R2 following TL are reinforced.

After the animal learns the mappings ‘‘TS ? R1,
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TL ? R2,’’ the experimenter presents new sample dura-

tions, t, ranging from TS to TL, and measures the subject’s

choices of, say, R2. The function relating the probability of

choosing R2 given a t-seconds sample, P R2jtð Þ, defines a

temporal generalization gradient, also known as the psy-

chometric function.

The prototypical gradient is ogival, starting close to 0 at

t = TS and ending close to 1 at t = TL. Moreover, in

animals, the duration t� following which the subject is

indifferent between R1 and R2 [i.e., P R2jt�ð Þ ¼
P R1jt�ð Þ ¼ 0:5], called the point of subjective equality

(PSE) or the bisection point, tends to be at the geometric

mean of the trained durations GM ¼ p
TS � TLð Þ½ �

(Catania 1970; Church and Deluty 1977; Stubbs 1976). It is

also the case that the gradients obtained with TS–TL pairs

with the same ratio (e.g., TS1 = 1 vs. TL1 = 4, and

TS2 = 4 vs. TL2 = 16) superimpose when t is scaled with

respect to TSi, another instance of scale invariance.

Figure 8c from Church and Deluty (1977) shows an

example.

Within the analytic approach, the temporal generaliza-

tion gradient obtained with the bisection procedure may be

one of the most extensively investigated. Researchers have

found that its shape is affected by a variety of factors such

as the ratio of sample durations (e.g., Church and Deluty

1977), sample modality (e.g., Wearden et al. 1998, 2007),

drugs (e.g., Meck 1983; Odum et al. 2002), and neuro-

logical conditions (e.g., Brown et al. 2011; Carroll et al.

2008; Caselli et al. 2009; Merchant et al. 2008).

The measured gradient may result from two excitatory

gradients (Fig. 8b), one related to response R1 and having

TS as the S? and TL as S- and the other related to R2 and

having TS as the S- and TL as the S? (see Machado and

Pata 2005; Vieira de Castro and Machado 2012; Vieira de

Castro et al. 2013).

LeT instantiates the preceding hypothesis (Fig. 8d). At

the beginning of training, each state is linked equally to

R1 and R2. During training, and given the reinforcement

contingencies of the task, the states most active following

the TS sample will become strongly linked to R1 and

weakly linked to R2, whereas the states most active fol-

lowing the TL sample will become weakly linked to R1

and strongly linked to R2. At the steady state, the two

vectors of link strengths will express the overlap between

state activation and reinforcement for each response. They

predict a temporal generalization gradient that increases

Fig. 8 a A simple bisection

trial and its contingencies.

Responses on Red and Green

keys are reinforced after the

short and long samples,

respectively. b Hypothetical

excitatory gradients for Red and

Green responses. c Temporal

generalization gradients

obtained by Church and Deluty

(1977) with rats in two simple

bisection tasks, one with 1-

versus 4-s samples, and the

other with 4- versus 16-s

samples. The gradients follow

an ogive curve, cross

indifference at the geometric

mean of the training samples,

and overlap when plotted in a

common scale. d Profile of link

strengths predicted by LeT.

‘Initial’ states are linked

strongly with Red and weakly

with Green; ‘late’ states are

linked strongly with Green and

weakly with Red. Subsequent

states retain their initial link

strength
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with t, has a bisection point close to the geometric mean

of TS and TL, and is scale invariant (see Machado et al.

2009).

LeT accounts well for the psychometric function when

the test stimuli are within the trained range (Machado

1997; Machado et al. 2009), but the model has difficulties

when the test stimuli are outside the trained range (t\TS

or t[TL). For according to LeT, durations significantly

shorter than TS or significantly longer than TL activate

states whose associative strengths did not change during

training, and therefore preserved their initial, unbiased

links with the two responses. Hence, as the test sample

decreases below TS or increases above TL, the predicted

gradient approaches indifference. According to LeT, then,

the full generalization gradient P R2jtð Þ is polytonic: (a) It

decreases as t increases from t = 0 to t = TS; (b) it

increases like an ogive from about 0 to about 1 as t in-

creases from t = TS to t = TL; and finally, (c) it decreases

to 0.5 as t increases above TL.

Few studies have investigated the shape of the gener-

alization gradient in the simple bisection procedure for test

durations outside the trained range. Moreover, their results

have been inconsistent (Russell and Kirkpatrick 2007;

Siegel 1986; Vieira de Castro and Machado 2012; Vieira

de Castro et al. 2013). Some studies found polytonic gra-

dients with increasing tails at the shortest durations

(t\TS), decreasing tails at the longest durations (t[TL),

or both effects (see Russell and Kirkpatrick 2007; Siegel

1986, Study 2; Vieira de Castro et al. 2013). However, the

results of other subjects in the same studies and the results

of other studies have found gradients with tails at the

longest durations that remained at least as high as at TL

(Siegel 1986, Study 1; Vieira de Castro and Machado

2012). We do not know the causes of this between-subjects

and between-studies variability.

Retrospective timing: double temporal bisection

and a context effect

The model’s generalization-based approach accounts also

for the data of the double bisection procedure. Originally

developed by Machado and Keen (1999) to contrast LeT

with SET, the double bisection procedure combines two

simple bisections. In one bisection, a response, say, peck-

ing a Red key, is correct following a 1-s sample, and

another response, pecking a Green key, is correct following

a 4-s sample (see Fig. 9a, left panel); the subject learns the

mapping ‘‘1 s ? Red; 4 s ? Green.’’ In the other

Fig. 9 a A double bisection procedure and its contingencies. The

subject learns two simple bisection tasks. In one (left), Red and Green

responses are reinforced after 1- and 4-s samples, respectively. In the

other (right), Blue and Yellow responses are reinforced after 4- and

16-s samples, respectively. b Hypothetical excitatory gradients for

Red and Green responses (left) and for Blue and Yellow responses

(right). c Profile of link strengths predicted by LeT

Anim Cogn (2016) 19:707–732 719

123



bisection, pecking a Blue key is correct following a 4-s

sample, and pecking a Yellow key is correct following a

16-s sample (Fig. 9a, right panel); the subject learns the

mapping ‘‘4 s ? Blue; 16 s ? Yellow.’’ Figure 9b shows

the hypothetical generalization gradients.

Critically, the 4-s sample is common to both bisections,

but the correct comparison (Green and Blue) differs. After

the animal learns the two mappings, the experimenter runs

generalization tests with samples that range from 1 to 16 s,

and with the Green and Blue keys as comparisons.

Several studies have shown that, given a choice between

Green and Blue, the preference for Green increases with

the sample duration (Arantes and Machado 2008; Machado

and Arantes 2006; Machado and Keen 1999; Machado and

Oliveira 2009; Machado and Pata 2005; Oliveira and

Machado 2008, 2009). Figure 10 shows this finding.

We named the result a context effect because of how

LeT explains it. According to the model, the difference in

the sample contexts in which Green and Blue are rein-

forced and extinguished is critical. Initially, all states are

linked equally to Blue and Green. But during training the

choice of Green is extinguished when the early states are

active (the effect of 1-s samples; Fig. 9c, left panel),

whereas the choice of Blue is extinguished when the late

states are active (the effect of 16-s samples; Fig. 9c, right

panel). Therefore, at the end of training, the early states are

linked more strongly to Blue than Green, whereas the late

states are linked more strongly to Green than Blue. These

asymmetries in the excitatory gradients for Green and Blue

predict that during testing the preference for Green over

Blue should increase with the sample duration, the context

effect.

Two studies show more directly how generalization

gradients predict the context effect. Vieira de Castro et al.

(2013) used the prototypical double bisection procedure

described above, but before running the Blue versus Green

test, they obtained two generalization gradients. After the

‘‘2 s ? Red, 6 s ? Green’’ training, they obtained the

gradient for Green over Red with samples ranging from 0.7

to 51.4 s (Fig. 11a). Similarly, after the ‘‘6 s ? Blue,

18 s ? Yellow’’ training, they obtained the gradient for

Blue over Yellow with samples also ranging from 0.7 to

51.4 s (Fig. 11a). Finally, they used these two gradients to

predict the gradient of Green over Blue. Although the

magnitude of the context effect was smaller than in pre-

vious studies, the predicted gradient matched qualitatively

the obtained gradient (Fig. 11b).

Vieira de Castro and Machado (2012) simplified the

double bisection procedure to obtain separate Green and

Blue gradients that were not ‘‘contaminated’’ by the com-

peting Red and Yellow responses. In the first bisection,

after 1- or 4-s samples, pigeons chose between a Green key

and a key with a Vertical bar. They received food for

choosing Green after the 4-s samples, but not after the 1-s

samples; they never received food for choosing the Vertical

bar, a comparison used only to force the pigeons to attend

to the choice keys. As in a go/no-go task, the pigeons

suppressed pecking to Green after the 1-s sample and

pecked Green after the 4-s sample. Next, to obtain the first

gradient, the experimenters presented samples that ranged

from 1 to 16 s and measured response rate on Green (see

Fig. 11c).

The pigeons then learned the second bisection, with 4-

and 16-s samples, and a Blue key and a key with a Hori-

zontal bar as comparisons. They received food only for

choosing Blue after the 4-s sample. At the end of training,

the experimenters obtained the second gradient (see

Fig. 11c).

In the final test, the pigeons chose between Green and

Blue. The issue was whether the two separately obtained

gradients could be combined to predict the gradient in the

final test. Figure 11d shows that the relative heights of the

separate gradients at each sample duration indeed predicted

the final gradient.

The various studies with the double bisection procedure

(reviews in Machado et al. 2009; Machado and Oliveira

2009) reveal the explanatory power of the synthetic

approach, its capacity to account for complex performance

by means of temporal generalization gradients combined in

relatively simple ways.

A case study: searching for relational temporal

control with LeT as the null hypothesis

The context effect could be interpreted differently, in terms

of subjects responding to the relative duration of the

samples. In each bisection task, one sample is short and the

Fig. 10 The context effect obtained by Machado and Keen (1999)

after training pigeons in a double bisection task. Given a choice

between Green and Blue, the keys associated with 4-s samples but in

different sample contexts, preference for Green increases with sample

duration
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other is long. Since Green was correct following the long

sample in the first task, and Blue was correct following the

short sample in the second task, the pigeons may have

learned the relational rules ‘‘long ? Green’’ and

‘‘short ? Blue’’ and then transposed them to the test trials;

hence, the context effect.

The issue of whether temporal control in the bisection

task is relational or absolute deserves closer scrutiny

because our Spencean approach, instantiated by the LeT

model, accounts for a reasonably large number of experi-

mental findings by assuming only absolute control with

temporal generalization. Any evidence for relational tem-

poral control that is irreducible to the combination of

generalization gradients would imply that LeT is if not

wrong at least incomplete; an alternative model would

seem to be called for. Hence, we propose to examine the

‘‘relational versus absolute’’ issue with LeT as a plausible

null hypothesis. Our analysis of the evidence will also

qualify as a new case study of the synthetic approach to

timing.

In addition to the double bisection studies, several

studies have suggested that rats (Church and Deluty 1977),

starlings (Hulse and Kline 1993), pigeons (Zentall et al.

2004), and humans (Molet and Zentall 2008) categorize the

training samples of the bisection task as either short or long

and use these categories on subsequent test trials. The

studies have adopted one of two different rationales and

designs. Figure 12 shows the first, introduced by Church

and Deluty (1977). In Phase A, one group of four rats

learned the mapping ‘‘1 s ? Left, 4 s ? Right’’ (Fig. 12a,

left panel). Then, in Phase B, half of the rats, the relative

group learned the new mapping ‘‘4 s ? Left,

16 s ? Right,’’ which preserves the relative assignments

‘‘short ? Left, long ? Right’’ (Fig. 12a, middle panel).

The other half, the absolute group, learned the new map-

ping ‘‘16 s ? Left, 4 s ? Right,’’ which preserves the

absolute assignment ‘‘4 s ? Right’’ (Fig. 12a, right panel).

A second group of four rats learned the same discrimina-

tions but in the opposite order, initially the ‘‘4 s ? Left,

16 s ? Right’’ mapping (Phase A), and then, after the

group was divided into two, half learned the relational-

preserving mapping ‘‘1 s ? Left, 4 s ? Right,’’ whereas

the other half learned the absolute-preserving mapping

‘‘4 s ? Left, 1 s ? Right’’ (Phase B). The preserved

mapping, relative or absolute, and the training order,

upshift (from 1 vs. 4 to 4 vs. 16 s) or downshift (from 4 vs.

Fig. 11 a Generalization gradients obtained by Vieira de Castro et al.

(2013) after training pigeons in a double bisection tasks with 2- versus

6-s samples in one task and 6- versus 18-s samples in the other. Green

and Blue were reinforced after 6-s samples, but Green was

extinguished after 2-s samples and Blue after 18-s samples.

b Obtained gradient for Green over Blue (the context effect), and

the gradient predicted from the two gradients in a. c Generalization

gradients obtained by Vieira de Castro and Machado (2012) in a

double bisection, go/no-go task, with 1- versus 4-s samples in the first

task, and 4- versus 16-s samples in the second task. Green and Blue

were reinforced after 4-s samples, but Green was extinguished after

1-s samples and Blue after 16-s samples. d Obtained gradient for

Green over Blue (the context effect), and the gradient predicted from

the two gradients in c
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16 to 1 vs. 4 s), defined four groups of two rats each,

relative upshift, relative downshift, absolute upshift, and

absolute downshift. If animals learn the relative value of

the samples during Phase A, then in Phase B they should

learn faster a task that preserves the relative assignment

than one that preserves the absolute assignment. On the

other hand, if rats learn only the absolute value of the

samples, the opposite should be the case. At issue then is

which group learns faster the task in Phase B.

Based exclusively on correct responses to the 4-s sample

during Phase B, both Church and Deluty (1977) and Hulse

and Kline (1993) concluded that subjects learn the relative

value of stimuli because the relative group (averaged across

the upshift and downshift groups) learned the second task

faster than the absolute group. Surprisingly, in both studies

the absolute group had not mastered the second bisection

task even after ten sessions (see Fig. 13a, b). The authors did

not report performance on the 1- or 16-s samples.

Carvalho and Machado (2012) extended the procedure

to pigeons but improved Church and Deluty’s design by

(a) doubling the number of subjects (N = 16), (b) adding a

third phase during which each pigeon was re-exposed to its

first bisection task (ABA0 design), (c) examining the results

also for the 1- and 16-s samples, and (d) comparing the

data with the predictions of the LeT model. Figure 14

summarizes their findings. The pigeons showed little evi-

dence of relational learning. At the beginning of Phase B,

correct responses to the 4-s sample were at or below chance

in the relative group, but at or above chance in the absolute

group (Fig. 14a); similar results were obtained in Phase A0

(Fig. 14b). Moreover, with few exceptions, the LeT model

predicted well the acquisition pattern of both groups not

only following the 4-s sample, but also following the 1- and

16-s samples (Fig. 14c–f).

To understand the model’s predictions, we label the

states that tend to be active after the 1-s sample as ‘‘early,’’

those that tend to be active after the 4-s sample as ‘‘inter-

mediate,’’ and those that tend to be active after the 16-s

sample as ‘‘late’’ (Fig. 12c). After the ‘‘1 s ? Left,

4 s ? Right’’ training, the early states are strongly linked

to Left and weakly linked to Right; the intermediate states

are strongly linked to Right and weakly linked to Left; and

the late states are linked equally to both responses. This

link profile determines how pigeons choose when the

second task begins (Fig. 12c, left panel). Consider the

relative group with the new mapping ‘‘4 s ? Left,

16 s ? Right’’: The links from the early states will not

change because these states will rarely be active; the links

from the late states will be biased toward Right; and the

links from the intermediate states will invert the bias

acquired in the first task, weakening the links to Right and

strengthening the links to Left (Fig. 12c, middle panel).

This inversion explains why the proportion of correct

responses following the 4-s sample decreases in the first

sessions of the second and third bisections. Now consider

the absolute group with the new mapping ‘‘4 s ? Right,

16 s ? Left’’: The links from the early states also will not

change because they are rarely active; the links from the

late states will be biased toward Left; and the links from

the intermediate states will remain biased toward Right

Fig. 12 a The two types of bisection trials used in some studies about

relational temporal control. In the first bisection task (left), Left and

Right responses are reinforced after 1- and 4-s samples, respectively.

In the second bisection task, for the Relative Group (middle) Left and

Right responses are reinforced after 4- and 16-s samples, respectively;

for the Absolute Group (right), Left and Right responses are

reinforced after 16- and 4-s samples, respectively. b Hypothetical

excitatory gradients for each response in each task. c Profile of link

strengths predicted by LeT. In the second task, Group Relative

reverses the link strengths from the modal state at 4 s (cf. middle

circle in middle panel)
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(Fig. 12c, right panel). Therefore, the proportion of correct

responses following the 4-s sample remains above chance

in the first sessions of the second and third bisections.

Similar reasons explain the model’s predictions for the 1-

and 16-s samples (see Carvalho and Machado 2012, for an

extended discussion).

Fig. 13 Acquisition curves for

Groups Relative (full circles)

and Absolute (empty circles) in

the second bisection task.

a Results obtained by Church

and Deluty (1977) with rats.

b Results obtained by Hulse and

Kline (1993) with starlings

Fig. 14 Average acquisition

curves obtained by each of the

four groups of pigeons in

Carvalho and Machado (2012)

study. The groups learned

distinct bisection tasks across

the three phases of an ABA0

design. The tasks (phases) were:

Group Relative Upshift:

‘1 s ? Left, 4 s ? Right’

(A and A0), and ‘4 s ? Left,

16 s ? Right’ (B); Group

Relative Downshift:

‘4 s ? Left, 16 s ? Right’

(A and A0), and ‘1 s ? Left,

4 s ? Right’ (B); Group

Absolute Upshift: ‘1 s ? Left,

4 s ? Right’ (A and A0), and

‘16 s ? Left, 4 s ? Right’

(B); Group Absolute Downshift:

‘4 s ? Left, 16 s ? Right’

(A and A0), and ‘4 s ? Left,

1 s ? Right’ (B). The top,

middle and bottom panels show

the proportion correct following

the 4-, 1-, and 16-s samples,

respectively. The inset graphs

show the predictions of the LeT

model. From Carvalho and

Machado (2012)

Anim Cogn (2016) 19:707–732 723

123



In a follow-up study, Carvalho et al. (2016) used Red

and Green keylight colors as comparisons, introduced

another phase (ABA0B0 design) to better study the acqui-

sition patterns, and attempted to predict choice on the first

session of each phase based on the generalization gradient

obtained at the end of the preceding phase. Their results

were generally consistent with their previous findings and

again offered little support for relational learning in the

bisection task. Moreover, the generalization gradients

obtained at the end of four phases were broadly consistent

with LeT. Figure 15 shows the average data and model fits.

Because these gradients have important implications for

our conceptions of temporal learning and memory in the

bisection task, we return to them below.

Zentall et al. (2004) approached the relational issue with

a different rationale and design. Pigeons learned separately

two bisections: ‘‘2 s ? Red, 8 s ? Green’’ and

‘‘4 s ? Vertical, 16 s ? Horizontal.’’ Then, on test trials,

they chose between Red and Green following the 4-s

sample and between Vertical and Horizontal following the

8-s sample. The 4-s sample had never been presented with

the Red and Green comparisons, and the 8-s sample had

never been presented with the Vertical and Horizontal

comparisons. If the pigeons had not learned the relative

value of stimuli during training, they should be indifferent

between Red and Green following the 4-s sample (the

geometric mean of 2 and 8) and between Vertical and

Horizontal following the 8-s sample (the geometric mean

of 4 and 16). But if the pigeons had learned to categorize

the trained samples as short and long, and associated these

categories with the correct comparisons (i.e., short with

Red and Vertical, long with Green and Horizontal), then

responding should be biased toward Red following the 4-s

short sample and toward Horizontal following the 8-s long

sample. As Fig. 16 shows, the results were mixed because

if the pigeons preferred Red over Green following the 4-s

sample, they were indifferent between Horizontal and

Vertical following the 8-s sample.

Maia and Machado (2009) enriched the testing proce-

dure by including other sample durations besides the geo-

metric mean of the training samples. They found that the

pigeons preferred Red over Green following the 4-s sam-

ple, but also Vertical over Horizontal following the 8-s

sample. That is, they chose the key associated with short

equally often after the 4- and 8-s samples. The general-

ization gradients obtained with each pair of comparisons

almost superimposed (Fig. 16).

Maia and Machado (2009) also showed that LeT could

reproduce the psychometric functions obtained with each

pair of comparisons with a slight bias for the short com-

parison at 4 and 8 s. The causal account runs as follows.

The sets of states active after the 2- and 4-s samples have

more common elements than the sets active after the 4- and

8-s samples and these common elements bias choice

toward the Red comparison. Similarly, the sets of states

active after the 4- and 8-s samples have more common

elements than the sets active after the 8- and 16-s samples

and these common elements bias choice toward the Ver-

tical comparison. According to LeT, then, the serial acti-

vation of the states and the link between these states and

the operant responses account for both Zentall et al.’s

(2004) and Maia and Machado’s (2009) results. More to

the point, performance in the temporal bisection task seems

broadly consistent with a model that assumes that rein-

forcement and extinction at specific time moments gener-

alize to neighboring moments. The evidence remains

consistent with the null hypothesis as instantiated by LeT.

Part III: Conclusion

We proposed a synthetic approach to interval timing in

animals, an approach grounded on the idea that temporal

generalization gradients may combine to produce complex

forms of temporally regulated behavior. Correlatively, we

suggest that to explain apparently complex behavior,

researchers may consider the combination of temporal

generalization gradients as a useful null hypothesis.

Several models could be used to instantiate the null

hypothesis, including the well-known and influential scalar

expectancy theory. We chose the LeT model, with which

we have worked since 1997 (Machado 1997), for the fol-

lowing reasons. Like its predecessor, Killeen and Fetter-

man’s (1988) behavioral theory of timing, LeT is based on

well-established principles of reinforcement and extinction

and accords with Weber’s law for timing, and hence it is

plausible. LeT has accounted well for data from a variety

of experimental situations (e.g., concurrent and retrospec-

tive timing with one or two responses), and hence, it has a

modicum of depth and breadth. LeT has helped us to look

at apparently disconnected procedures and data through the

same lens, and hence it is integrative. LeT is framed in

mathematical language and predicts not only acquisition

patterns but also steady-state performance; hence it is

clearer and empirically more sensitive than purely verbal

models. LeT also encompasses a relatively small number of

free parameters as compared to other influential timing

models (e.g., SET), and hence it is parsimonious and easily

falsifiable. But perhaps its most significant feature is that

the model operationalized in a relatively straightforward

way the Spencean approach, explaining both its primitives

(how animals generalize responses to stimuli) and their

derivatives (how the generalization gradients interact to

predict known and sometimes surprising results; e.g.,

context effects). As Killeen (1999) put it, ‘‘models are go-

betweens,’’ and the LeT model has served us well in going
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back and forth between data and our sense of understand-

ing temporal performance.

Our basic tenet is that many apparently complex phe-

nomena in the timing domain may be explicable either by

simple phenomena or by their combination in a Spencean

fashion. Certainly, many key questions remain unanswered

about temporal generalization gradients, as both ex-

planandum and explanans. We summarize four of them

below because we believe that to advance our under-

standing of timing and build more powerful quantitative

causal models and theories we will have to answer them

satisfactorily. Moreover, to show their broad pertinence to

our understanding of timing, we examine the questions

according to the LeT and SET models. Our exam will also

show the heuristic value of the synthetic approach pro-

posed here.

The shape of generalization gradients outside the

trained range. What is the shape of temporal generalization

gradients outside the range of trained durations? A

response reinforced at T seconds since a time marker, but

extinguished before T, will increase in strength as time

elapses from 0 to T, but how strong will it be significantly

Fig. 15 Generalization gradients produced by pigeons (symbols) in

Carvalho et al.’s (2016) study and the curves fitted by the LeT model.

The pigeons learned distinct bisection tasks across the four phases of

an ABA0B0 design. The tasks (phases) were: Group Relative Upshift:

‘2 s ? Red, 6 s ? Green’ (A and A0), and ‘6 s ? Red,

18 s ? Green’ (B and B0); Group Relative Downshift: ‘6 s ? Red,

18 s ? Green’ (A and A0), and ‘2 s ? Red, 18 s ? Green’ (B and

B0); Group Absolute Upshift: ‘2 s ? Red, 6 s ? Green’ (A and A0),

and ‘18 s ? Red, 6 s ? Green’ (B and B0); Group Absolute

Downshift: ‘6 s ? Red, 18 s ? Green’ (A and A0), and

‘6 s ? Red, 2 s ? Green’ (B and B0). The top and bottom panels

show the average gradients for the Relative and Absolute groups,

respectively. The data from the Downshift groups were reflected

around the 6-s vertical line before averaging them with the data from

the Upshift groups. Adapted from Carvalho et al. (2016)

Fig. 16 Pigeons learned two bisection tasks, one with a ‘2 s ? Red,

8 s ? Green’ mapping, and the other with a ‘4 s ? Horizontal,

16 s ? Vertical’ mapping. Next they were exposed to new test

samples but with the same comparisons. Zentall et al.’s (2004) data

show the preference for Red over Green following 4-s samples (filled

squares) and the preference for Horizontal over Vertical following 8-s

samples. Maia and Machado’s (2009) data show how the preference

for Red (filled circles) or Horizontal (empty circles) varied with

sample duration
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after T? Models such as LeT and SET assume that the

effect of reinforcement at T seconds is represented in

associative links or in memory stores by a Gaussian density

function with mean equal or close to T, which would seem

to entail a bell-shaped response gradient centered at T.

However, as we mentioned before, if reinforcement is

omitted the response persists unabated for an interval much

longer than T, which means that the Gaussian representa-

tion alone cannot explain the gradient.

At this juncture, the two models diverge. According to

LeT, the response remains strong because the links from

the states that become active only after T retained their

initial, above threshold strength. But the account remains

unsatisfactory not only because we lack direct evidence

about the processes it assumes, but also because it does not

specify any boundary conditions such as how long the

response persists after T because of reinforcement at T.

According to SET, the response remains strong because

the animal learned to start responding sometime between 0

and T, when the representation of elapsed time is suffi-

ciently close to a sample extracted from the memory of

reinforced times, but it did not learn to stop responding. A

categorical decision rule carries the explanatory load. But

the account also remains unsatisfactory because SET has

not explicated how such learning happens, or which cir-

cumstances determine when the start and stop rules are

activated.

The shape of the gradient outside the trained range

remains unclear also in retrospective tasks such as the

temporal bisection procedure. As mentioned before, the

empirical evidence is scarce and hard to interpret, but

clearly responding outside the trained range is not random.

In some cases, proportion ‘‘Long’’ returned to indifference,

a result consistent with non-categorical decision rules

similar to LeT, but in other cases proportion ‘‘Long’’

remained high for samples longer than the long trained

sample, and low for samples shorter than the short trained

sample, a result consistent with categorical decision rules

similar to SET (see Carvalho et al. 2016, for the pros and

cons of categorical and non-categorical decision rules).

The ‘‘becauses’’ of temporal generalization gradients.

What factors determine temporal generalization gradients?

Do they remain the same throughout their range? Consider

a bisection task with 1- and 10-s training samples. We do

not know whether the choice gradients for test samples

shorter than 1 s and longer than 10 s are determined by the

same factors. One such factor may be the intertrial interval

that typically precedes all samples: If research shows that it

influences choice following the shortest samples but not the

very long test samples (see Pinto and Machado 2011,

2015), we need to conclude that different factors affect

different ranges of the generalization gradient and then

proceed to define the boundary conditions of each factor.

Current timing models also may be overlooking some of

the fundamental causal processes of temporal generaliza-

tion, namely inhibitory processes and their behavioral

expression in terms of inhibitory temporal generalization

gradients. Although such gradients remain speculative,

some empirical findings seem to require them. Consider a

situation in which the experimenter combines two peak

procedures, each signaled by different cues, S1 and S2, a

tone and a light for example. In one peak procedure, the FI

is T-seconds long; in the other, the FI is 2T-seconds long.

Hence, the animal experiences four types of trials, two FIs

and two empty trials, in random order. After sufficient

training, test trials with the compound cue S1 ? S2

(light ? tone) are introduced under empty trial conditions.

The outcome is that rats exhibit a response-rate gradient

that peaks between the two reinforced moments, T and

2T (other ratios have been used; Swanton et al. 2009;

Swanton and Matell 2011).

Although many effects obtained in these studies remain

hard to interpret (e.g., the effects of reinforcement proba-

bility or signal modality), their authors have argued that the

gradient on compound trials is due to some sort of aver-

aging of the temporal memories formed during training

(Matell and Henning 2013; Matell and Kurti 2014; Swan-

ton et al. 2009; Swanton and Matell 2011). From what we

exposed earlier, the reader will not be surprised if we

suggest an alternative, synthetic account grounded on three

assumptions. First, during training, the states become

coupled with the operant response by two sets of links, one

controlled by S1 and changed during the S1 trials, and the

other controlled by S2 and changed during the S2 trials.

Second, the negative covariation between the activation of

some states and reinforcement drives the link strengths,

W(n), to negative values, instead of zero. Third, on com-

pound-cue trials, responding while state n is active depends

on whether the sum of its two links, perhaps differentially

weighted, exceeds a threshold. Our Spencean hypothesis is

that the gradient on compound trials may result from the

sum of the two gradients engendered by the distinctly cued,

and separately trained, peak procedures, the gradient cen-

tered at T and the gradient centered at 2T. Although the

hypothesis remains to be elaborated mathematically, it

makes a straightforward prediction: If the two reinforced

moments are far apart, for example, T1 = 30 s and

T2 = 240 s, and the empty trials eliminate response rate on

the right wing of the gradients, then, on compound trials,

no peak should occur in the interval from, say, 75–150 s.

A Gaussian-like gradient, with a clear peak within that

interval, would refute the hypothesis.

The foregoing hypothesis tests inhibitory processes

indirectly, by means of a peak of responding at a moment

t clearly outside the generalization basins of reinforcement

at T and 2T, and on compound trials of a complex peak
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procedure. It would be desirable to test for inhibition also

more directly—as Honig et al. (1963) did for the dimension

of line-tilt, for example—and across different concurrent

and retrospective procedures.

Generalization gradients and the structure of temporal

memory. The two preceding issues highlight the need for

systematic studies of an analytical sort to better understand

the primitives of the synthetic approach, the shape of the

generalization gradients within and without the trained

range and their causal factors and processes. A different set

of issues comes to the forefront when we attempt to use

these primitives to synthetize more complex temporal

performances. One of them is the structure of temporal

memory, whether it is distributed across the links, as LeT

assumes, or concentrated in distinct stores, as SET

assumes.

The issue will impose itself whenever a single response

is reinforced at two or more different moments since a time

marker and no stimulus signals the trial duration. As

mentioned above, this situation occurs in a mixed FI 10-s–

FI 120-s schedule with a single response key illuminated

with the same white light on both the short and long trials.

Results show that on the majority of the long trials a pigeon

will peck the key at a high rate during two periods, a period

bracketing 10 s, and a period starting before 120 s and

ending with food; the average rate gradient is bimodal.

To explain this result we may assume, following LeT,

that temporal memory is distributed throughout the asso-

ciative links, W(n), and that each link exerts its effect only

when its corresponding state becomes active. The two

response periods observed on each trial as well as the

bimodality of the average gradient stem directly from the

distributed profile of link strengths. But we may also

assume, following SET, that the animal forms two memory

stores, one containing the subjective times at the end of the

10-s trials and the other containing the subjective times at

the end of the 120-s trials. This assumption of two con-

centrated memories would be represented by two Gaussian

density functions, one for the 10-s FI and the other for the

120-s FT. The two response periods could be explained by

assuming that the animal samples the two densities in the

order ‘‘10-s’’ density first, ‘‘120-s’’ density second. The

problem is that, as mentioned above, the reasoning is cir-

cular because it assumes the very discrimination it was

intended to explain; it merges explanans with explanan-

dum. First, to form the two stores, each with its own

Gaussian density, the animal already needs to discriminate

the two sets of reinforced times, for otherwise it would be

unable to save in the correct store the subjective time

reinforced at the end of each trial. And second, to access

the stores in the right order also presupposes the discrim-

ination of their contents. In other words, the circularity

occurs twice, to form the temporal memories and therefore

bootstrap the timing process, and to access the temporal

memories and thereby generate the bimodal gradients (see

also Machado and Silva 2007a, b; also Gallistel 2007).

In addition to concurrent timing tasks, the problem of

temporal memories occurs also in retrospective time

judgements tasks. Singer et al. (2006, Experiment 2)

showed that pigeons can learn to map three samples onto

two comparisons: ‘‘2 s ? Green, 8 s ? Red, 32 s ?
Green.’’ To explain successful learning in this many-to-one

bisection task, LeT would proceed in the same way as for

any other bisection task. Because the associative links are

distributed, the mapping of 2- and 32-s samples onto the

same Green comparison poses no problem. In contrast,

models that posit concentrated memories, each indexed by

a different comparison stimulus, have no principled way to

explain how the Green key indexes the correct memory, the

‘‘2-s’’ store on the shortest, 2-s trials, and the ‘‘32-s’’ store

on the longest, 32-s trials.

The same problem is illustrated in Fig. 15 by the data

from the absolute group (bottom panels). Across the

ABA0B0 phases of Carvalho et al.’s (2016) study, this group

was exposed alternately to the bisection tasks ‘‘2 s ? Red,

6 s ? Green’’ (A and A0) and ‘‘18 s ? Red,

6 s ? Green’’ (B and B0). The sample mapped to Green

always equaled 6 s, but the sample mapped to Red was

shorter than 6 s in one phase, and longer than 6 s in the

subsequent phase. Hence, across phases, the pigeons

effectively learned to map three samples onto two com-

parisons. Moreover, the association learned in one phase

(e.g., ‘‘18 s ? Red’’ in Phase B) was retained to a large

degree while the pigeons learned another association

(‘‘2 s ? Red’’ in Phase A0).
To see this result more clearly and appreciate its

implications, Fig. 17 shows a particularly striking case, the

gradients produced by a single pigeon from the absolute

group and the curves fit by the LeT model. Consider the

proportion of choices of the Green comparison following

the 18-s sample. In Phase A (left panel, filled circles), after

learning the mapping ‘‘2 s ? Red, 6 s ? Green,’’ the

pigeon chose Green on most 18-s trials. This result is

consistent with SET’s account for the bisection task (two

memories stores, one for each sample durations, plus a

categorical decision rule), but, as the solid line shows, it is

inconsistent with LeT. In Phase B (left panel, empty cir-

cles), after learning the mapping ‘‘18 s ? Red,

6 s ? Green,’’ the pigeon rarely chose Green on the 18-s

trials, a result in line with the contingencies of reinforce-

ment and consistent with both models. The critical issue is

how the pigeon responds to the 18-s sample after relearning

the mapping ‘‘2 s ? Red, 6 s ? Green’’ in Phase A0.
According to SET’s account for the bisection task, the

pigeon should choose Green on most trials as it did in

Phase A. According to LeT, the pigeon should choose
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Green on significantly fewer trials because the association

‘‘18 s ? Red’’ learned in phase B should not be strongly

affected during Phase A0. In fact, the only way to reduce

the ‘‘18 s ? Red’’ association during phase A0 is through

generalization from the 6-s sample (associated with

Green); to the extent that reinforcement of Green following

the 6-s sample does not generalize significantly to the 18-s

sample, the ‘‘18 s ? Red’’ memory will be preserved. As

the dotted line in the right panel shows, the data were more

consistent with the LeT model.

The data from the 2-s sample revealed the same effect—

having learned to associate 2 s with Red during Phase A

(cf. left panel, filled circle at 2 s), the pigeon continued to

choose Red during Phase B (left panel, empty circle at 2 s),

whereas a SET-like account would predict that the map-

ping ‘‘6 s ? Green, 18 s ? Red’’ learned during Phase B

would engender a strong preference for Green at 2 s. Then

same effect occurred during Phase B0.
These results challenge the two models, but in different

ways. Concerning SET, the challenge is to explain how

pigeons learn a many-to-one mapping in the temporal

domain, either during a single task (Singer et al. 2006) or

across tasks (Carvalho and Machado 2012; Carvalho et al.

2016), a challenge likely to require different assumptions

concerning temporal memory. Concerning LeT, the chal-

lenge is to explain not memory formation but the cate-

gorical-like responding present during Phase A, a challenge

likely to require a different decision rule.

Temporal memory and sample context. A somewhat

related issue deals with temporal memory and context.

Consider the bisection task: Are the temporal memories

associated with the two trained samples context-indepen-

dent in the sense that each memory is unaffected by the

other memory, or context-dependent? If the latter, what is

the specific form of the context dependence? SET illus-

trates context independence because all its features,

including the memory representations of each sample,

remain the same regardless of the alternative sample.

Hence, without further assumptions, SET cannot explain

the context effect observed in the double bisection studies.

In contrast, by assuming that the distributed links change

with both samples as the animal learns to choose one

comparison and not to choose the other comparison, LeT

naturally predicts the context effect.

The context dependence of temporal learning and

memory is also central to the relational versus absolute

issue. Our approach based on LeT and the findings from

our laboratory have supported the absolute, null hypothesis,

but the picture is blurred by contrasting findings from other

laboratories. If some form of relational temporal learning

does take place, that is, if a sample is represented in terms

of its absolute duration as well as its duration relative to the

other sample, then we need to identify the processes

underlying this form of relational learning, and integrate

them with the processes of absolute temporal learning with

generalization gradients. How to carry out this integration

remains to be worked out (see also Maia and Machado

2009).

While the four questions raised above await further

research, we reaffirm our main message: The bulk of the

evidence in the interval timing field seems to support the

hypothesis that complex temporally regulated behavior

may be synthesized from simple temporal generalization

gradients.

Even though the study of timing was originally

embedded on the general field of stimulus control of

responding, in the last decades it has grown as an inde-

pendent research field. The synthetic approach to tempo-

rally regulated behavior can potentially reestablish the link

between timing and other stimulus dimensions. One

promising extension of our reasoning involves spatial

cognition. An obvious connection is Weber’s law: Pigeons

Fig. 17 Generalization gradients produced by pigeon P751 (symbols)

in Carvalho et al.’s (2016) study and the curves fitted by the LeT

model. The pigeon learned the following bisection tasks (in each

phase of the ABA0B0 design): ‘2 s ? Red, 6 s ? Green’ (A and A0),
and ‘18 s ? Red, 6 s ? Green’ (B and B0)
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accustomed to search for hidden food in an arena show

clustered search patterns around the goal location when

food is absent. Similarly, when pigeons have to estimate

the perpendicular distance from a surface, their search

accuracy follows Weber’s law (Cheng 1990, 1992).

In an extension of Guttman and Kalish (1956) and

Jenkins and Harrison’s (1960) classic studies on stimulus

generalization, Cheng et al. (1997) explored the applica-

bility of the stimulus generalization concept to the spatial

realm. In their Experiment 2, for example, pigeons learned

a spatial discrimination with pecks to a touchscreen rein-

forced in the presence of a S? and extinguished in the

presence of a horizontally displaced S-. The subsequent

generalization tests involved presenting the discriminative

stimulus at different horizontal locations. They found clear

evidence for an area shift in the direction away from the

S-, and when the S? and the S- were closer together

(Experiment 3) a peak shift was also observed. Although

the modeling efforts were by no means exhaustive, the

authors themselves implemented a Spencean approach

using spatial generalization gradients to explain their

results (for a broad revision of small-scale spatial cogni-

tion, see Cheng et al. 2006).

Transformation tests implemented to understand how

information from multiple landmarks is combined provided

another tests to our approach. Suppose that animals are

trained to search for food between two landmarks. Suppose

further that after learning the task, the two landmarks are

moved further apart. Where should animals search for

food? Gerbils (Meriones unguiculatus) concentrate their

search in the two spots each at the correct distance and

location for one of the landmarks (Collett et al. 1986). In

contrast, pigeons search for food at intermediate locations

as if they were averaging information from the different

landmarks (e.g., Cheng 1989). Despite these differences

across species, the results suggest that once the animal

learns that food is at a given distance from a landmark, it

distributes its responses according to this distance, and the

more a location differs from the learned distance, the less

the subject responds to that location. Such spatial differ-

entiation describes a spatial gradient of responding (our

spatial primitive), and we could conceive of it as one of the

ingredients to take into account in a synthetic approach to

spatial cognition. How the gradients interact to generate a

single search location or a larger search area is still unclear

but the landmarks themselves could, under certain cir-

cumstances, distort the primitive generalization gradients.

To sum up, when properly operationalized, the synthetic

hypothesis (e.g., LeT) may play a role akin to a null

hypothesis in conventional statistical testing. Like any null

hypothesis, its ultimate fate is to be rejected by the data and

replaced by a better hypothesis. When that happens we will

have advanced significantly our understanding of timing.
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