How can we help the teachers of children returning to school following catastrophic injuries/extensive medical procedures?

Outcomes what are they and should we generate or support a standard measure?

And more . . .

Members were sought to join task force groups, with many unable to attend. Groups are currently being formed, and ABA members or guests interested in joining a task force should contact Mike Mozzoni (877) 758-8799 or by e-mail at mpmozzoni@ualr.edu or mmozzoni@neurorestorative.com

If you want to be a part of the solution and are willing to work on issues, join the Rehabilitation and Independent Living SIG. Together we can make a difference!

Standard Celeration Society SIG

Abigail B. Calkin, PhD

In November 2002, the Standard Celeration Society held its Fifteenth International Precision Teaching Conference in Harrisburg, PA. Over 150 people attended, including faculty and students from Connecticut’s Ben Bronz Academy. A sizeable number of parents of autistic children from Canada and the United States attended.

The Sixteenth International Precision Teaching Conference will occur in Columbus, Ohio November 6 through 8 For information contact Rick Kubina at rmk11@psu.edu.

We have recently updated the Standard Celeration Society website. Its URL is http://www.celeration.org. Check it out! Its new, rapid speed allows very quick access to all sorts of interesting information about charting, its growth from Skinner through Lindsley to the present, and its over 35-year history.

The Journal of Precision Teaching and Celeration, issue 1 of volume 19 is out. Volume 18, number 2 of the journal included a special section on Precision Teaching in Ireland.

Society for the Quantitative Analyses of Behavior (SQAB)

Lessons from the Problem of Points

By Armando Machado, PhD

Historians like to assign the symbolic birth of the various sciences to important events. The birth of probability theory is usually assigned to the correspondence exchanged during the seventeenth century between two famous French mathematicians, Blaise Pascal and Pierre de Fermat. As the story goes, the Chevalier de Mère, a gentleman known for his fondness of gambling, asked Pascal how to solve the following problem: Two players, A and B, play a fair game. For example, they may flip an honest coin, with Player A winning one point if the outcome is Heads and Player B winning one point if the outcome is Tails. The first player to win five games receives the handsome sum of, say, $80. Unfortunately, the game must be interrupted when Player A has won three games and Player B has won two games; how should the stakes be divided between them?

Pascal and Fermat’s solution to the problem of points, as it came to be known, rested on the principle that the stakes should be divided according to the number of games each player still needed to win at the moment the game was interrupted. More specifically, each player should receive a sum proportional to his probability of winning the game, were the game to continue as initially planned. The two authors advanced different, but ultimately equivalent, ways to determine the probability of winning for each player. In particular, Pascal’s solution introduced the famous Pascal Triangle familiar to students of probability theory.

Naturally, historians of mathematics have tended to stress the ideas and techniques used by the two Frenchmen to compute the probabilities. But one should not overlook the fact that these ideas and techniques were advanced only after a principle had been agreed upon, a principle that divided the stakes according to the probabilities of winning the contest. The principle seems eminently reasonable, but reasonableness is not a mathematical concept. In fact, there was nothing in the mathematics of the 17th century, nor is there anything in the mathematics of the 21st century, to suggest or justify it.

I would like to draw two lessons based on the Problem of Points. First, when applied to our physical, biological, or social worlds, the language of mathematics is secondary to clear and distinct non-mathematical ideas. ‘Reasonableness’ pertains to philosophy, ‘momentum’ to physics, and ‘reinforcement’ to psychology. Second, the language of mathematics should not be confused with
that which is described mathematically. Criticism of one does not apply to the other. Were someone to claim that the stakes should be divided in proportion to the games already won, we could agree or disagree, but our decision would have no bearing on the probability concepts and techniques introduced by Pascal and Fermat. Similarly, if someone claims that to deal with the molar, global, or Gestalt-oriented properties of learning and perceptual processes, for example, we need “a better mathematics” because the current one is local, elementalist, and feature oriented, we would reply that the claim confuses descriptions of the world with the mathematical concepts and techniques used in the descriptions. For mathematics is neither molar nor molecular, global or local, Gestalt or elementalist, but simply abstract. That is why the same mathematical ideas and techniques can be used to describe remarkably different phenomena, from the division of stakes between two players to the behavior of pigeons in a Skinner box; from the movement of planets around the sun to that of ions across a cell membrane.

The Society for the Quantitative Analysis of Behavior (SQAB) held its annual meeting in San Francisco, May 23 and 24, just before ABA. Randolph Grace, the new Program Chair, invited a set of distinguished speakers to address the main theme of the meeting, Decision Theory and Choice in humans and animals. Bill Palya invited four additional speakers to deliver the preeminent tutorials—SQAB’s attempt to help researchers and students understand the strengths and limitations of specific quantitative techniques. The concepts and techniques of probability theory first developed by Pascal and Fermat were present, almost surely, to clothe interesting psychological concepts and theories. A poster session with cash-bar on the night of the 23rd brought everyone together in an informal, pleasant setting. Darlene Crone-Todd organized the logistics of the meeting and Patrice Miller and Michael Commons handled the financial aspects of the Society and composed its Newsletter. If you missed SQAB in San Francisco, I invite you to join us in Boston.

In the meantime, please visit our website at http://sqab.psychology.org. If you are not yet a SQAB member, you may wish to become one and gain access to the peer-reviewed proceedings of previous meetings. Former SQAB president Peter Killeen and I have just completed the editorial process regarding the meeting in Toronto. The proceedings of that meeting have been posted on our web site (special thanks to Bill Palya and Don Walter) and published in a special issue of Behavioural Processes. SQAB members attending the San Francisco meeting received a copy of that special issue. Once again, come and join us!

Correspond with: Armando Machado; Instituto de Educação e Psicologia; Universidade do Minho; 4710-057 Braga, Portugal; mail: armandom@iep.uminho.pt

Visit the ABA Website!
www.abainternational.org

Features

- Membership Application and Renewal
- START (ABA’s Service to Apply, Recruit, and Train)
- Journals and Publications
- Society for the Advancement of Behavior Analysis
- ABA Affiliated Chapters
- Special Interest Groups (SIGs)
- International Development
- Student Committee News

Convention Page

- Proposal Submission
- Convention Registration
- Hotel and Travel
- Exhibitor Information
- Convention Schedule
- Continuing Education
- Program (posted on-line February 2004)